Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem

In this paper, we introduce two iterative algorithms based on the hybrid steepest descent method for solving the split feasibility problem. We establish results on the strong convergence of the sequences generated by the proposed algorithms to a solution of the split feasibility problem, which is a solution of a certain variational inequality. In particular, the minimum norm solution of the spl...

متن کامل

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

On the Steepest Descent Method for Matrix

We consider the special case of the restarted Arnoldi method for approximating the product of a function of a Hermitian matrix with a vector which results when the restart length is set to one. When applied to the solution of a linear system of equations, this approach coincides with the method of steepest descent. We show that the method is equivalent with an interpolation process in which the...

متن کامل

residual norm steepest descent based iterative algorithms for sylvester tensor equations

consider the following consistent sylvester tensor equation[mathscr{x}times_1 a +mathscr{x}times_2 b+mathscr{x}times_3 c=mathscr{d},]where the matrices $a,b, c$ and the tensor $mathscr{d}$ are given and $mathscr{x}$ is the unknown tensor. the current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

On the Steepest Descent Method for Matrix

We consider the special case of the restarted Arnoldi method for approximating the product of a function of a Hermitian matrix with a vector which results when the restart length is set to one. When applied to the solution of a linear system of equations, this approach coincides with the method of steepest descent. We show that the method is equivalent with an interpolation process in which the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.06.63